
QGEN
A Professional Data Manipulation Program

User's Guide

Revision: 21.1.5

QGEN is the data cleaning and manipulation component of the QUIP System

QUIP System software is available from:

www.quipsoftware.com

QGEN documentation by

Jan Werner Data Processing

Copyright  1998-2021 Jan Werner Data Processing

QGEN User's Guide Revision: 21.1.5 Page i

TABLE OF CONTENTS

TABLE OF CONTENTS ... i
INTRODUCTION ..1
1 HOW QGEN WORKS ..1

1.1 The Work Area ..1
1.2 Input and Output Streams ...2
1.3 Other Input and Output ...2

2 THE SPEC FILE ..2
2.1 Specification Types ...3
2.2 Comments and Special Commands ...3

3 DATA DIRECTIVES ...3
3.1 File Names..3

3.1.1 INTAP and INDATA Files ...4
3.1.2 OUTAP Files ..4

3.2 Command Line Data Directives ...5
4 GLOBAL OPTIONS ...5

4.1 Address Mode ...5
4.2 The RUNOPS Line ..6

5 DATA FLOW ..7
5.1 INSERT Instructions ...8
5.2 IDs and Sequence Checking ...8
5.3 Some Examples of Data Inserts ..9

6 THE QUIP SPECIFICATION LANGUAGE ...9
6.1 Data Specifications ...9

6.1.1 Addressing Data ..9
6.1.2 Fields and Numbers ...10
6.1.3 Columns and Punches ...11
6.1.4 Literals, Constants and Numeric Expressions ..11

6.2 Counters and Switches ...11
6.2.1 Counters ..11
6.2.2 Switches ..12

6.3 Testing Data ...12
6.3.1 Field and Numeric Tests ..12
6.3.2 Punch Tests ...13
6.3.3 Boolean Operators and Compound Tests ..14
6.3.4 Examples of Test Conditions ...14

7 INSTRUCTIONS AND ACTIONS ...15
7.1 Tags..15
7.2 Results and Actions ..15
7.3 Data Modification Actions ..16

7.3.1 Clearing Fields ...16
7.3.2 Entering Values Into Data ..17
7.3.3 Incrementing Counters ...17
7.3.4 Setting and Clearing Switches ...17

7.4 Output Actions ..18
7.4.1 Print Control Codes..19

7.5 Program Flow Actions ...19
7.5.1 Subroutines ...19

QGEN User's Guide Revision: 21.1.5 Page ii

7.6 Cleaning Rules ...20
8 OPERATION CODES ..20

8.1 Logical Instructions ...20
8.2 Arithmetic Instructions ...21
8.3 Comparison Instructions ...21
8.4 Column Binary Punch Instructions ..22
8.5 Data Conversion Instructions ..23

8.5.1 Formatting With Edit Masks ...23
9 PROGRAM CONTROL INSTRUCTIONS...24

9.1 Loop Instructions...24
9.2 Loops and Program Flow ..25

10 TABLE LOOKUPS ..25
10.1 Tables ...25
10.2 Table Lookup Instructions ...26
10.3 Examples of Table Lookups ..26

11 DICTIONARIES ..27
11.1 Dictionary Labels and Definitions...27
11.2 Using Dictionary Substitutions ...28
11.3 Built-in Dictionary Labels ...28
11.4 Command Line Parameters ...28

12 FLOW CONTROL AND BATCH PROCESSING ...29
12.1 Includes ...29
12.2 Stopping and Starting Specs and Listings ...29

13 WHERE TO GET ADDITIONAL INFORMATION ..30

QGEN User's Guide Revision: 21.1.5 Page 1

INTRODUCTION
The QUIP System is a software package that allows almost any data set to be tabulated and the
results presented as fully annotated tables. It includes programs to handle data manipulation
and conversions, validity checking, marginal counts and weighting, as well as cross-tabulation.
The QUIP System was designed to meet the needs of data processing professionals in the most
demanding production environments and handle data sets that are too large or too complicated
for other tabulation programs or integrated survey packages. The QUIP System programs are
entirely script-driven and run from a command prompt, permitting batch processing or execution
from within other programs, as required for repetitive tasks and for building automated systems.
The programs in the QUIP System share a common specification language that allows users to
describe extremely complex combinations of logical conditions and numeric expressions. This
language is compiled in memory at run-time, so all programs run very quickly on large data files.
This guide provides an introduction to QGEN, the data recode and cleaning component of the
QUIP System. It aims to teach beginners the basics of QGEN and to provide a reference for
more experienced users.
The following conventions are used throughout this document:

Angle brackets: <...> A mandatory item to be specified.
Square brackets: [...] An optional item to be specified.
Vertical bar: ..|.. Only one of the listed items should be specified.

QGEN keywords are in uppercase and the minimum abbreviation for each in bold uppercase,
lowercase letters are used where a number should be entered (e.g., WIDTH nnn).

Whenever the name QGEN appears, users of the demo version should substitute QGEND.

1 HOW QGEN WORKS
QGEN is a data generation language interpreter, much like the RPG (report program generator)
languages used in the early days of data processing. QGEN compiles a set of instructions and
then applies them to the data from one or more input files, one record at a time, generating new
records in one or more output files as it progresses sequentially through the data.
The most common uses for QGEN are to recode each record of a data file according to a given
set of directives, or to list those records that break certain rules. But QGEN can be used for a
wide variety of other purposes, such as generating or reformatting text files, summarizing data,
collapsing hierarchical data structures or building new ones from flat files.
QGEN provides a full set of tools to control the flow of execution, cumulate data across records,
insert data from one file into the matching records in a second file, assemble complete records
from discrete components, create multiple records from a single record, direct output to multiple
files selectively and generate printable reports from a data file.

1.1 The Work Area
The work area is a region of memory into which QGEN reads a record from the input files before
executing the instructions in its script. The size of the work area is 250,000 bytes, which is also
the maximum record length that QGEN can read or write
QGEN is said to be "data driven" because all of its actions are determined by the contents of the
work area at the time each instruction is executed.

QGEN User's Guide Revision: 21.1.5 Page 2

QGEN instructions can access any location in the work area. Input records replace any existing
content, but the remainder of the work area is not cleared by default between records, allowing
information to be cumulated or passed from one record to subsequent ones.

1.2 Input and Output Streams
QGEN can read records into the work area from two separate data streams simultaneously and
output to many separate output streams, usually about 30 in a Windows environment.
The input stream is the primary incoming data stream, functioning as the master file when an
insert stream is also specified. Each record in the input stream is read in its entirety into the
work area as a case, or logical record.
The insert stream is a slave or trailer incoming data stream, relying on a case ID field in the data
to distinguish between cases. Any number of physical records from the insert stream may be
inserted into a single case, or logical record, in the work area, usually requiring a cardcode field
(see section 4.2) to distinguish between different record types.
Either or both of these streams may be specified for a given QGEN run. It is even possible to
generate output data from no input data at all, using only instructions and an end of job recycle.
Each of the two input data streams may each specify any number of files which will be read
consecutively in the sequence they appear in the specifications.
Output streams are written simultaneously and each generates a single data file.
Section 5 describes the flow of data from the input streams into the work area in a QGEN run.
The directives used to define the input and output streams are describe in section 3.1.

1.3 Other Input and Output
In addition to the input and output data streams, QGEN can generate a report file containing
plain ASCII text produced a line at a time using special instructions. A rudimentary interactive
capability is also provided in the form of SAY and GET instructions that send text to the console
and retrieve input from the keyboard (see section 7.4).
The only file that is always created by a QGEN run is the listing file, which numbers the lines of
instructions in the script file, displays error messages, lists cleaning rules broken and a number
of summaries and statistics. ASCII text can be placed in the listing file in addition to, or instead
of, the report file or any output files.

2 THE SPEC FILE
QGEN instructions are called specifications, or "specs" for short. QGEN reads the specs from
an ASCII text file called a spec file. The spec file contains all the information the program needs
to process the data from the input files and produce the desired output files.
Specs must be written using a text editor that can write files that do not contain any embedded
control codes or tab characters. Case is ignored except in dictionary labels and literal strings.
Spaces are used as separators between operands and keywords. The number of spaces does
not matter if less than 20. QGEN considers any text following 20 or more consecutive spaces on
an instruction line to be comments and shows them in the listing while ignoring their contents.
Tab characters are not allowed in specifications. Blank lines are ignored but show in the listing.

QGEN User's Guide Revision: 21.1.5 Page 3

QGEN compiles a spec file in a single pass so items such as look-up tables and dictionary
entries must be defined before they can be referenced elsewhere in the spec file, but tags used
as program flow targets may appear anywhere in the file as they are resolved after compilation.

After a spec file has been written, QGEN may be run from a command prompt by entering:
QGEN <filename> [command line directives|parameters]

QGEN will compile the spec file named on the command line, checking for syntax errors and
writing the listing to disk as it proceeds through the specs. If there were no errors in the specs,
the input data will be processed according to the instructions, and any output files written.

2.1 Specification Types
A QGEN spec file contains several different types of specifications, which should appear in the
following order in the spec file:
DATA DIRECTIVES: Specifications that describe the listing, input and output files.
RUN LEVEL OPTIONS: Options and parameters that apply to the entire QGEN run and

describe how data will be addressed.
INSERT DEFINITIONS: Required only if data is read from an insert file to define where the

inserts are placed in the data record.
INSTRUCTIONS: Tell QGEN what to do based on the contents of the work area for

the current record.

Other specifications, such as dictionaries and includes, may appear anywhere in the spec file.

2.2 Comments and Special Commands
Any line beginning with an asterisk (*) in column 1 is treated as a comment, appearing in the
listing file but otherwise ignore by QGEN.
An END statement is a line with the keyword END beginning in column one and containing no
other text. END statements are used to terminate dictionaries (see section 10) and lookup
tables (see section 10). An END statement anywhere else in the spec file forces the immediate
end of the specifications causing QGEN to skip past all remaining lines in the spec file.
Except within lookup tables and dictionaries, a line containing only the letter "P" in column 1
causes a formfeed to be inserted at that point in the listing file. A line containing only a dollar
sign ($) in column 1 forces the immediate end of the specifications, like an END statement.

3 DATA DIRECTIVES
Data directives identify the input data files and the output files created by QGEN. Each data
directive begins with a keyword followed by the file name.

3.1 File Names
QGEN accepts the following data directives:

INTAP[n] <[path\]filename.ext (lrecl> [V] Input data file.
INDATA[n] <[path\]filename.ext (lrecl> [V] Insert data file.
OUTAP[n] <[path\]filename.ext (lrecl> [V|C] Output data file.
REPORT <[path\]filename.ext> Report text output file.
LISTING <[path\]filename.ext> Spec listing file.

QGEN User's Guide Revision: 21.1.5 Page 4

If no LISTING file is specified, QGEN will create one in the current directory, generating a
unique name for it. All other output files are created only if that data directive is present in the
spec file. When no explicit path is given, QGEN always reads from and writes to the current
directory. All file names must be in DOS format (8.3).
INTAP, INDATA and OUTAP directives name data files followed by a left parenthesis and the
record length in bytes. Unless explicitly specified as variable or constant, the record length is
assumed fixed, meaning that each consecutive block of bytes of the specified record length is
considered a separate record.
The letter "V" after the record length indicates variable length records, each of which must be
terminated by an end-of-line marker (Carriage Return-Line Feed). For variable length records,
the specified record length must be equal or greater to that of the longest record in the file, not
counting the 2 bytes for the CR-LF.
The letter "C" after the record length in OUTAP directives indicates constant length records,
which are padded with blanks to the indicated record length, then terminated with a CR-LF pair.
QGEN looks for the CR-LF when reading files specified as either variable or constant, so while
a "C" may be used in input data directives without causing an error, the result is identical to "V".

3.1.1 INTAP and INDATA Files
A QGEN run may have any number of INTAP and INDATA files, which may be numbered, as
INTAP1, INTAP2, INDATA23, etc., although any numbering is ignored by QGEN. Both input
streams are read simultaneously, and within each stream, files are processed sequentially in the
order in which they appear in the spec file, regardless of numbering. All the files in each stream
should have the same record length specified.

3.1.2 OUTAP Files
Each OUTAPn data directive generates a separate output data stream. The number "n" in the
keyword is required if more than output file is specified and will be used in the spec file to direct
data to the output streams it identifies. If "n" is omitted, the file will be referenced as OUTAP1.
Each individual OUTAPn directive immediately opens a file for output, overwriting any existing
file by that name without warning, whether or not any data is ever written to the file.
By default, QGEN writes each case to OUTAP1 when it reaches the end of the instructions. All
other output activity must be explicitly specified by using the appropriate output actions to select
or drop output streams for the current case (see section 7.4).

QGEN User's Guide Revision: 21.1.5 Page 5

3.2 Command Line Data Directives
Data directives may optionally be specified on the command line using the following switches:

/I[n]= <[path\]filename.ext> INTAP file name
/IL[n]= <nnn > INTAP record length
/D[n]= <[path\]filename.ext> INDATA file name
/DL[n]= <nnn > INDATA record length
/O[n]= <[path\]filename.ext> OUTAP file name
/OL[n]= <nnn > OUTAP record length
/L=<[path\]filename.ext> LISTING file name
/S[n]=<[path\]filename.ext> SPEC file name
/T=<[path\]filename.ext> REPORT file name

Multiple data directives are separated by spaces (e.g., /X=xx /Y=yy /Z=zz). The total length of
the command line (including program invocation) may not exceed 127 characters. Up to 4 spec
files may be listed on the command line; they are read in numeric sequence and treated as a
single spec file. Data directives contained in the spec files always override those provided on
the command line.
Up to 4 INTAP, INDATA and OUTAP files may be specified on the command line for a single
run and each must have a matching record length (e.g., /ILn=). Variable and constant length
records cannot be specified using command line data directives.

4 GLOBAL OPTIONS
Global options apply to an entire QGEN run. They should be set after the data directives and
before any instructions. Except for the data address mode, all run options are specified on the
RUNOPS line. All options have defaults that are used when explicit settings are not specified.

4.1 Address Mode
QGEN requires a data address mode to be defined before any specifications can be processed.
The SETUP ADDRMODE statement determines whether specs refer to 1-byte ASCII characters
or the 2-byte column-binary format used mostly in marketing research. It also specifies whether
the data are addressed using card/column or direct offset notation.
The concept of the address mode is fundamental to understanding how QGEN processes data:
The address mode determines how the program interprets the specification of data locations
and their contents in the remainder of the spec file. For more on how ADDRMODE affects data
addressing, see section 6.1.1.
To set the address mode, use one of the following statements at the beginning of the spec file:

SETUP ADDRMODE B Column-binary data addressed by card and column.
SETUP ADDRMODE C Character data addressed by position in record.
SETUP ADDRMODE D Character data addressed by card and column.
SETUP ADDRMODE E Column-binary data addressed by position in record.

If address mode is not explicitly stated, QGEN defaults to ADDRMODE B (column-binary data,
card/column addressing).

QGEN User's Guide Revision: 21.1.5 Page 6

4.2 The RUNOPS Line
The RUNOPS line begins with the keyword RUNOPS. Options are invoked by keywords
separated by spaces, some of which are followed by one or more parameters. RUNOPS line
options are listed below with the applicable parameters.

RUNOPS Indicates that this is a runops line. Must be the first
item on the line.

CC datafield[,datafield] Gives the location in the insert data file (INDATA) of
the cardcode used to identify physical records that
are to be inserted into a single logical record in the
work area. Two fields can be specified, separated
by commas, and their contents concatenated into a
single cardcode. A maximum of 20 alphanumeric
characters can be used. See section 5.1 below for
more information on cardcodes and insertions.

CLEAR addr,addr[;addr,addr[;...]] Areas in the data work area to be cleared between
records. Each area is defined by the beginning and
ending address, separated by commas. Up to 10
areas can be specified, separated by semicolons.
The default is no area cleared, except for that used
by the input data (INTAP).

ID datafield[,datafield] Tells QGEN where to find the case ID in the input
data file (INTAP). Two fields can be specified,
separated by commas, and their contents will be
concatenated into a single ID. A maximum of 20
alphanumeric characters can be used.

IDIN datafield[,datafield] Specifies the case ID field in the insert data file
(INDATA). The same rules apply as for ID.

INSTART addr Starting location in the work area for the input data
(INTAP). Defaults to the first byte of the work area.

LENGTH nnnnn Page length (in lines) for the listing and report files.
The default is no page skips, maximum is 32,767.

MAXERR nnn[,nnn][,nnn] Maximum number of various data error messages
that QGEN will accept before aborting a run. The
first number is the number of broken cleaning rules.
The second number is the number of file-matching
error messages from an insert. The third number is
the number of data conversion errors to allow. If
not specified, the default for each is 1000. The
maximum value for each limit is 32,767.

NOMATCH Suppresses the error messages generated when
insert records are bypassed because they do not
have matching records in the input data stream.

OUTSTART addr Starting location in the data work area from which
the output data will be written. The default is the
first byte of the work area.

QGEN User's Guide Revision: 21.1.5 Page 7

RECYCLE Causes QGEN to execute an additional pass of the
specifications after the last input record has been
processed. OUTAP1 is selected unless a DRP
instruction (see section 7.4) is used to turn it off.
Switch 5 is set on at the beginning of the recycle
pass so that the user can test whether the current
pass is on actual data or the end of job recycle.

SEQ type[,type] Requests sequence checking for input data. The
first "type" applies to the ID field in the input data
and the second to the IDIN filed in the insert data.
Types are A (ascending), E (equal or ascending--
allowed for INTAP only), and N (none).

TEST nnnnn|ALL|SPECS Stop after processing 'nnnnn' cases, ALL cases, or
after testing the SPECS. The default is ALL.

WIDTH nnn Maximum width of text output for both the LISTING
and the REPORT files. Valid range is 80 to 250.
The default is 132.

ZCOUNTER nn Number of decimal places to use for the display of
counter contents in the listing file (nn = 0 to 15).
The default is 0.

5 DATA FLOW
The diagram below illustrates how the input and insert streams are combined for each logical
record in a QGEN run to produce one or more output streams:

The essential difference between the input and insert streams is that each record in the input
stream generates a single logical record, or case in the work area, whereas the records in the
insert stream are treated as separate elements of a logical record identified by a case ID.
Under most circumstances, QGEN requires only the input stream defined by the INTAP data
directives, but there are two specific situations require data to be read from the insert stream
defined by the INDATA data directive.
The first of these occurs when additional data must be inserted into some or all of the records in
the input file. In this situation, both input and insert streams are used.
The second occurs when the data consists of separate physical records that must be combined
into a single logical record for each case. In this situation, only the insert data stream is used.

Work Area
Instructions applied to data

 INTAP

INDATA

OUTAP1
OUTAP2

OUTAPn

QGEN User's Guide Revision: 21.1.5 Page 8

5.1 INSERT Instructions
Insert instructions tell what to read from the INDATA file and where to insert it in the work area.
If the insert stream contains more than one physical record per logical record, each record must
be identified by a unique code in the cardcode field (CC on the RUNOPS line, see section 4.2),
and each distinct record type requires a separate insert instruction, which may specify as many
as 10 different insertions from that record.
An insert instruction is written on a single line, beginning with the keyword INSERT, followed by
a cardcode between single quotes if there is more than one record type, an optional 'mandatory
record' flag, and up to 10 different insertion specifications. The format is:

INSERT ['code'] [M|P] aa1,bb1,cc1 [aa2,bb2.cc2 ...
The cardcode may be up to 20 columns long and may contain any characters. An asterisk (*) in
any column of the cardcode is a wildcard representing any character in that position. The size
of the cardcode in each insert instruction must match that given for CC in the RUNOPS line.
A mandatory record flag M tells QGEN that this record must be present if any insertions at all
were made into a logical record. The flag P, which tells QGEN that this record type is optional,
may be omitted.
Each insertion specification lists three addresses in the current addressing mode, separated by
commas. The first is the starting address in the INDATA record for the data being inserted, the
second is the starting address in the work area for the data to be placed, and the third is the end
address in the work area for the inserted data. The second and third addresses determine the
amount of data inserted by each specification.

5.2 IDs and Sequence Checking
While each record in the primary input stream (INTAP) always generates a case, records from
the insert data stream (INDATA) can be lost for several reasons, as described in this section.
When inserting data from INDATA into INTAP, QGEN reads both files in parallel and attempts to
keep them synchronized on the case ID, as defined by the RUNOPS parameters ID and IDIN
(see section 4.2). If one file contains records that are not in the other, this synchronization may
fail and data for subsequent matching records in INDATA may not be properly inserted. This
can be avoided by sorting both files on the ID and calling for sequence checking with the SEQ
parameter on the RUNOPS line. When it is known that both files contain the same cases in the
same order, the IDs need not be sorted, and sequence checking may be omitted.
The order of multiple physical records within a logical record in an insert file is not important, but
in the case of duplicate cardcodes, the first will be inserted and any following ones skipped.
For logical records constructed from multiple different physical records (INDATA, but no INTAP),
a new logical record will be created each time a new ID is read from the insert stream and it is
not necessary to check the ID sequence.
It is possible to build logical records from multiple physical records with no common ID or with
no unique cardcode to differentiate between them by reading records one at a time from the
primary input stream and constructing the logical record in the work area, writing it out only
when fully assembled, or after the first record of the next case has been read. This can be done
using the output control actions described in section 7.4, but it requires considerably more effort
than using the built-in insert mechanisms.

QGEN User's Guide Revision: 21.1.5 Page 9

5.3 Some Examples of Data Inserts
The following examples illustrate some ways of using inserts in QGEN.

RUNOPS IDIN 101b4 CC 180b1 CLEAR 101,280
INSERT '1' M 101,101,180
INSERT '2' 101,201,280

This illustrates the common case where a logical record is built from two card images, the first of
which is require, the second of which may not be present in the input file. The record identified
by cardcode 1 in column 80 is read into the work area as card 1, if a record with the same ID
has cardcode 2, it will be read into the work area as card 2. Note that IDIN, CC and the source
field in the INSERT instructions are all specified as their positions in the insert records, whereas
the output field in the INSERT instructions is specified as the position in the work area. In this
situation, it is essential to clear the work area where the data will be inserted, because a case
that had only one card image in the insert file would otherwise inherit the data for the other from
the previous case. A record will be created if either or both cards are present for a case, but if
card 1 is missing, it will be listed with a "MANDATORY CARD(S) MISSING" message.

RUNOPS ID 21c8,31c2 IDIN 1c10 CC 11c3 SEQ A,A NOMATCH
INSERT 'A**' 21,41,43 24,51,53 27,61,63
INSERT 'a**' 21,41,43 24,51,53 27,61,63

This shows a situation where data is being inserted into an existing file. Data from any record
with a cardcode beginning with the letter "A" in upper or lower case will be inserted into a record
with the matching ID in the primary data file. Note that the ID is constructed from two parts in
the main file, while it is in a single field in the inserts, and that no messages will be generated for
records in the insert file that do not have a matching record in the main file. If no insert is made
for a record in the primary file, the contents of the insert areas will remain unchanged.

6 THE QUIP SPECIFICATION LANGUAGE
The QUIP specification language allows QGEN to define the tests and numeric values in the
data that instructions use to perform computations and construct logical rules for decisions.

6.1 Data Specifications
When tabulating data, QGEN reads one record at a time into a work area and applies the specs
to the contents, incrementing counts and cumulating events for vectors that meet the specified
test conditions as it proceeds sequentially through the data file. This section describes how to
use the QUIP specification language to define conditions and events directly.

6.1.1 Addressing Data
QGEN addresses data using absolute column locations within each the work area. The location
is specified as an offset from the beginning of the work area using direct addressing or using the
card/column notation widely used in statistics and marketing research. The actual data location
addressed by a specification is defined by the address mode (see section 4.1).
In address modes C and D, a column occupies a single byte, while in address modes B and E,
a column occupies two bytes. Address modes C and E use direct offset notation, so in address
mode C, column x is byte x of the record, while in address mode E, column x consists of the two
consecutive bytes 2x-1 and 2x.

QGEN User's Guide Revision: 21.1.5 Page 10

In card/column notation, the column number within the card is a two-digit number ranging from
01 to 80 and must be preceded by a card number. The first 80 columns of a record are written
as 101 through 180, the next 80 columns as 201 through 280, and so on. The data in columns
180 and 201 would be addressed as columns 80 and 81 in direct offset notation.
QGEN interprets data locations according to the current address mode automatically. Any data
type can be used in any address mode but even-numbered bytes cannot be addressed directly
in column-binary address modes since addresses correspond to 2-byte column locations.

6.1.2 Fields and Numbers
A data address followed by one of the codes listed below will be treated as a field or a number.
QGEN recognizes the following field or numeric codes (either upper or lower case):

An Column number or field, 'n' digits or columns long, where column depends on
address mode. This translates to Bn if the address mode is B or E, and to Cn if
the address mode is C or D.

Cn Character number or field, 'n' digits or characters long
Bn Column-binary number or field, 'n' digits or columns long
Xn Extended column-binary number, 'n' digits long, where an 'X' punch repeated 'n'

times represents 10 to the power n (e.g. for X2, 'XX' = 100).
H Short, signed integer (sometimes called a 'halfword')
I Short, unsigned integer
F Long, signed integer (sometimes called a 'fullword')
G Long, unsigned integer
Q Single-byte, signed integer (sometimes called a 'quarterword')
R Single-byte, unsigned integer
E Single-precision floating point (occupies 4 bytes)
D Double-precision floating point (occupies 8 bytes)
Pn Packed decimal number 'n' digits long; 'n' is an odd number between 1 and 15

Fields (codes A, B, C, X) may be from 1 to 15 characters long for numbers or field comparisons.
Column-binary fields (A, C) may be up to 80 columns long and character fields (A, C) may be
up to 250 bytes long when testing for their being blank or non-blank.
Leading blanks are allowed in numeric fields, embedded blanks and non-numeric characters are
not, except for a leading minus sign to indicate a negative value. To handle situations when
numeric fields may contain non-numeric values, codes A, B, C and X may be followed by a
suffix indicating how to handle special conditions: "B" indicates that blanks are to be given the
value zero, and "E" indicates that any non-numeric value be given the value zero (e.g., 101be2
represents a 2 column column-binary field in which any non-numeric entry would translate to 0).
Data type A accepts another suffix, "X", that causes it to work like the data type X (extended
column-binary) with either column-binary of ASCII data, as per the address mode. In ASCII
data, X-punches are represented in data by minus signs, so for a field defined as 21AEX3, an
entry of "---" would translate to 1000, "--1" to zero, and "-10" to minus 10. This suffix may be
used in operands but cannot be used in result fields.

QGEN User's Guide Revision: 21.1.5 Page 11

6.1.3 Columns and Punches
An address with no field code identifies a single column that contains "punch" data and may
contain only the values that correspond to the punches in a column of a Hollerith (or IBM) card.
The punches are 1 through 9, 0, X and Y, in that order. In ASCII modes, the X punch refers to a
minus sign (-) and the Y punch to an ampersand (&) in the actual data.
In column-binary data, a column may contain multiple punches in any combination. This allows
as many as 12 different codes to be stored in a single 2-byte column in column-binary data, as
compared to the 12 bytes that would be required to store the same information as ASCII. For
this reason, column-binary is often used for data sets containing many multiple response items.

6.1.4 Literals, Constants and Numeric Expressions
Literals are constant values used in comparisons and usually follow a logical operator. They are
indicated in specs by single quotes. QGEN treats literals differently depending on the context in
which they appear. In column tests, they are punch lists; in numeric tests, literals are numeric
values and in field comparisons they are character strings. Multiple literals may be specified
within a pair of single quotes for certain types of tests (see section 6.3).
Constants are values used in numeric expressions and are indicated by prefixing a number by
the letter "K", thus K132 represents the constant value 132.
Numeric expressions are built from numeric fields and constants using the four standard
arithmetic operators: +, -, * and / for addition, subtraction, multiplication and division.
Parentheses () may be used to provide precedence among operators (up to 15 levels).
QGEN converts all numeric values internally to double-precision for evaluation or computation,
so spec writers do not need to be concerned with mixing data types or multiplying values to
preserve their precision.

6.2 Counters and Switches
Outside of the work area, QGEN provides two data areas that are not cleared between cases
and cannot be read directly from the input streams. These are called counters and switches and
are designed to be used for counting events or flagging conditions across cases. An additional
set of program switches is used to flag certain conditions within the case being processed.

6.2.1 Counters
QGEN provides 1000 double-precision floating point counters addressed as Z1 through
Z1000.Counters are set to zero at the beginning of a QGEN run, not cleared between cases,
and program actions can increment them to count events across cases (see section 7.3.3).
They may also be addressed directly in arithmetic expressions and instructions, like any other
double-precision floating point field.
Counters are stored in adjacent memory locations and can be looped through with an 8-byte
increment (see section 9). Counters may also be used to provide variable numbers of passes
for loop instructions and while a loop is executing, the current pass number may be read from
counter Z1000, which should therefore not be used for other purposes.

QGEN User's Guide Revision: 21.1.5 Page 12

6.2.2 Switches
QGEN provides 36 single-byte fields that can take only the values 1 or 0, called switches and
identified by the keyword SW followed by a one-character alphanumeric identifier. All switches
start with the value zero at the beginning of a QGEN run.
The 26 letter switches (SWA through SWZ) are called user switches and are not reset to zero
between cases. They are often used to flag conditions within or between cases.
The numbered switches (SW0 through SW9) are reset to zero between logical records and set
to one to flag certain conditions that could not otherwise be directly tested for in specifications.
They should not normally be set by the user.
The conditions indicated for the current record by numbered switches are:

SW1 The record was out of sequence in the input data stream (INTAP).
SW2 One or more inserts were successfully made from the insert data stream

into the current logical record (from INDATA).
SW3 One or more insert records were bypassed as invalid for the current

logical record (from INDATA)
SW4 A mandatory record type (see section 5.1) was missing from the insert

data stream for the current logical record (from INDATA)
SW5 Indicates an end-of-job recycle pass, after the last record from any input

data sources has been processed. See the definition of the RECYCLE
keyword in section 4.2 for details.

SW6 A cleaning rule (see section 7.6) was broken. This is set to 1 after each
broken rule, so it may be reset to allow testing the current case against
later rules in the spec file being broken.

SW7 This record begins a new data file in the input stream.
SW8 This record begins a new data file in the insert stream.
SW9 A conversion error or other arithmetic anomaly occurred. Set to 1 after

each error, so it may be reset to allow testing later in the spec file.

6.3 Testing Data
A case is counted by QGEN when specified conditions test true. Field and numeric tests
require an operator. Punch tests apply to single columns and no operator is used. Complex
conditions may be created by using Boolean operators to combine simple tests.

6.3.1 Field and Numeric Tests
The following operators test a field for the conditions indicated:

B Test field for being Blank (blank means that the field contains all spaces
for ASCII data, all nulls for column-binary data).

P Test field for being Packable (the field contains a valid numeric value).
Q Test the field for being either Packable or Blank.
U Test the field for being Unpackable (the field is not a valid numeric value).

QGEN User's Guide Revision: 21.1.5 Page 13

The following operators test the numeric value of a field against one or more number literals:
='nn[;mm] Equal to a numeric value. A maximum of 4 numeric values may be

specified for the literal, separated by semi-colons.

G'nn' Greater than or equal to a numeric value.
L'nn' Less than or equal to a numeric value.
>'nn' Greater than a numeric value.
<'nn' Less than a numeric value.
R'nn;mm' Falls within a numeric Range (from;to).

The following operator compares the contents of an ASCII field to one or more string literals:
@[-n]'mm' Character string compare [optionally for "n" contiguous fields] (used with

ASCII data only). Accepts up to 4 literals separated by semi-colons, all of
which must be of the same length as the field being compared.

The following operators test the value of an ASCII field against the ASCII string value of literals
(the relative value of an ASCII string is determined by its sort sequence):

@G'aa' Greater than or equal to an ASCII string value.
@L'aa' Less than or equal to an ASCII string value.
@>'aa' Greater than an ASCII string value.
@<'aa' Less than an ASCII string value.
@R'aa;bb' Falls within a Range of ASCII string values (from; to).

The sense of all field and numeric tests may be reversed (negated) by the "Not" operator N. For
field and numeric tests, the N is placed immediately in front of the operator. For the field
compare test, the N is placed immediately before the literal, outside the quote. For string value
tests, the N is placed between the @ sign and the comparison operator.

6.3.2 Punch Tests
Punch tests are specified by a column address followed immediately by a literal containing a list
of punches to be tested for. The list of punches is called a punch mask and the test is satisfied
if any of the punches in it are present in the column. A range of consecutive punches may be
specified using a hyphen (-), so '1-Y' is equivalent to '1234567890XY' and '1-39-X' is the same
as '12390X'. Note the order of punches in the mask (see section 6.1.3). Punch tests may test
for the absence of punches by prefixing either the literal or the punch mask itself with an N.
For column-binary data only, a column may be tested for the number of punches it contains by
using the tally operator:

T<op><n>'pp' Where <op> is a numeric comparison operator (=,<,>), n is a
number from 0 to 12 and 'pp' is a list of the punches to be counted
in the tally.

QGEN User's Guide Revision: 21.1.5 Page 14

6.3.3 Boolean Operators and Compound Tests
The following Boolean operators are used to combine conditions into compound tests:

& Logical AND: The result is true if, and only if, both conditions are true.
(Ampersand)

! Logical OR: The result is true if either condition, or both, are true.
(Exclamation point)

() Parentheses: The entire expression within a matching pair is treated as a
single condition or value in a Boolean or arithmetic expression.

{ } Braces: Allows an arithmetic expression to be used in a test as if it were
a single numeric field in a test condition.

The maximum length of a QGEN specification is 500 bytes, and expressions may be nested in
parentheses up to 15 levels deep, so very complicated conditions may be specified. There is no
Boolean "not" operator, so compound expressions cannot be negated as a whole.
Compound expressions are evaluated from left to right but this will stop if any invalid values are
found in a numeric field, causing the entire specification to default to false. For this reason, data
in numeric fields used in compound expressions should always be tested for validity.

6.3.4 Examples of Test Conditions
The following examples illustrate data tests using the QUIP specification language. Note that
tests on single column fields and punch tests can almost always be used interchangeably, but
the punch tests are often easier to specify and are more readable:

11'125' Test for punches 1, 2 or 5 in column 11
11C1R'1;2'!11C1='5' Same result, using value tests
11C1R'1;5'&11N'3;4' Same result, different logic
21C5='125' Test a 5 byte field for the numeric value 125 (the test will

be true for 125, 0125, 00125)
21C5@'00125' Test a 5 byte field for the string "00125" (the test will be

false for " 125" or " 0125")
21C3B Test for a 3-column field being blank
21C3P Test for a valid number in a 3-column field
101'1-8' Test for the presence of punches 1 through 8 in column

(any combination will satisfy this in column-binary data)
101N'1-8' Test for the absence of punches 1 through 8 in column

(any punches other than 1-8 may be present)
101'N1-8' Same as the preceding
101T=1'1-8' Test for the presence of exactly 1 punch in the range 1-8

in column (column-binary data only)
101T>2'1-8' Test for the presence of more than 2 punches in the range

1-8 in column (column-binary data only)
{21C3+24C3}='100' Test that the sum of the values in the 3-column fields

beginning in 21 and 24 is equal to 100

QGEN User's Guide Revision: 21.1.5 Page 15

{21CB3+24CB3}='100' Same as above, but set the value to a blank field to zero
so that it does not cause the entire specification to fail.

21C3@-3'100' Test for the character string "100" beginning in columns
21, 24 or 27

21C1@R'A;Z' Test for any uppercase letter in a 1 column field
121X2='100' Test for a value of 100 in a 2 column field in column-binary

data (represented by an X punch in both columns)
121AX2='100' Same as above, but for either column-binary or ASCII

data, depending on the address mode
Z21='100' Test for a value of 100 in counter Z21 (see section 6.2.1)
SW2'1' Test for switch 2 being set (see section 6.2.2)

7 INSTRUCTIONS AND ACTIONS
QGEN instructions are written one to a line and are executed sequentially in the order they
appear in the spec file, unless the order of execution is modified by a program flow control
action (see section 7.5).
The format for instructions is:
[Tag] <Result> <Operation Code> [Operand A] [Operand B] [Operand C] [Operand D]
Except for tags, the elements of the instruction must be separated by spaces. The number of
spaces does not matter, but 20 or more consecutive spaces indicate that all remaining text on
that line are to be considered comments and ignored by QGEN. No spaces are allowed within
the result or operand fields themselves, except within literal strings.
Depending on the nature of the instruction, as defined by the instruction code, the operands
may be test conditions, data fields, literal strings or numeric constants as described in section 6.
See section 8 for descriptions of the instruction codes.

7.1 Tags
A tag consists of two characters between underscores, (e.g., _XX_) and provides a label for an
instruction line as the target of a program flow control action (see section 7.5) or as the end of a
loop instruction (see section 9). A tag must always be the first item on the line it identifies.
Tags are resolved after all the instructions in a spec file are read. Actions may reference tags
anywhere in the spec file, while loop instructions may only reference tags on following lines.
Tags may use any alphanumeric characters, are not case sensitive. and must be unique within
a spec file, so two lines tagged as _A1_ and _a1_ in the same spec file will cause a spec error
and prevent QGEN from running. References to tags need not use the underscores unless the
tag label is numeric, which would cause a reference to an absolute or relative line number.

7.2 Results and Actions
For arithmetic, data conversion, table lookup and most column-binary punch instructions, the
result field specifies where the result of the operation will be placed. This can be any location
within the work area, including counters or switches (see section 6.2.2) when appropriate.

QGEN User's Guide Revision: 21.1.5 Page 16

For arithmetic instructions, the result must be a valid numeric field definition (see section 6.1.2).
Numeric results in character and column-binary fields are right-justified and left-zero-filled, with
a minus-sign (-) entered in the first column of the field for negative numbers.
QGEN does not check for underflow or overflow, so it is up to the user to ensure that the field
specified is adequate to contain the result of the operation. For all types except floating point,
only the integer part of a decimal fraction is retained and the most significant digits are dropped
if the number is too large to fit the allocated result field. In general, it is a good idea to perform
computations in floating point, using counters as temporary work areas, then to test the results
before converting them into the final desired format in the data area.
For data conversion and table lookup instructions, only the beginning of the output area should
be specified, as the size of the output field is determined by the operands or the lookup table.
For logical, comparison and some column-binary punch instructions, the result field will be either
an action or a cleaning rule name (see section 7.6).
An action is taken when the result of the instruction applied to the operands evaluates true and
modifies some data in the work area, the output streams, or the flow of program control.
Multiple actions may be specified in the result field of an instruction by concatenating them with
an ampersand (&). Multiple actions are executed from left to right, as in the following example.

121b1*&121'Y' AND 121t>1'1-Y'

This instruction will evaluate true if column 121 contains more than one punch. The first action
will clear the column of all punches (121b1*), and the second action will add the Y-punch to the
column (121'Y'), thus resulting in a column containing only the Y-punch.

7.3 Data Modification Actions
There are four types of data modification actions that can be specified as an instruction result:
 A character or column-binary field can be cleared.
 A constant value, string literal or punch can be entered into a field or column.
 A counter can be incremented.
 A switch can be set or cleared.

7.3.1 Clearing Fields
Character (ASCII) and column-binary fields are cleared to blanks by following the field definition
in the result area with an asterisk (*). For ASCII character fields, all bytes are cleared to spaces
(decimal 32/hex 20). For column-binary fields, columns are cleared to nulls (0 in both bytes).

51c200* ALL Clear bytes 51-250 to ASCII spaces
213b2* AND 211b2b Clear cols. 213-214 if 211-212 are blank

QGEN User's Guide Revision: 21.1.5 Page 17

7.3.2 Entering Values Into Data
A numeric constant is entered into a numeric field (but not a counter, see section 7.3.3 below)
by specifying the field in the result area followed by the desired value between single quotes.
Negative and fractional values may be used, but all decimals will be discarded in integer fields.

15c3'1' ALL Will enter "001" into bytes 15-17
15c3'-1' ALL Will enter "-01" into bytes 15-17
15c3'1.5' ALL Will enter "001" into bytes 15-17
15d'1.5' ALL Will enter the floating point value 1.5
 into bytes 15-22

A string literal may be entered into a character field by specifying the field in the result area
followed by the string operator (@) and the string between single quotes. The length specified
for the field must be the same as the length of the string.

15c3@'abc' ALL Will enter "abc" in bytes 15-17
15c3@'1' ALL *** Will cause a spec error!

Punches are entered into columns by specifying the column followed by the punches between
single quotes. Multiple punches may be specified in column binary data and they will be added
to the column without clearing or displacing any punches already present. In ASCII data, a
"punch" in a "column" is actually a character in a byte, so only one "punch" can be specified and
the column must already be blank in the work area for the current record, or a run-time error will
be generated and the instruction will not be executed.

121b'234' ALL Adds punches 2,3 and 4 to column 121
121c'234' ALL *** Will cause a spec error!
121'2' ALL Adds punch 2 to column 121

In address modes C or D (see section 4.1), the last example above will fail with a run-time error
message for any record in which the work area byte addressed as column 121 is not blank at
the time the instruction is executed.

7.3.3 Incrementing Counters
A counter is incremented by a numeric constant by specifying the counter in the result area
followed by the value of the constant between single quotes. The format is the same as when
entering constants into data fields, except that the constant is added to the previous value of the
counter, instead of replacing it.

z21'1' ALL Adds 1 to the value in counter z21
z21'-1' ALL Subtracts 1 from the value in counter z21
z21'1.5' ALL Adds 1.5 to the value in counter z21

7.3.4 Setting and Clearing Switches
Switches are set using the same syntax in the result area as used to test switches in operands.
Setting a switch is unconditional, that is, it does not toggle the value of the switch:

swa'1' all Set switch A to 1 (on)
SWB'0' all Set switch B to 0 (off)

QGEN User's Guide Revision: 21.1.5 Page 18

7.4 Output Actions
These actions provide a variety of methods for QGEN to send data to different output streams
or files, to interact with the user while it is running, or to control subsequent actions of a batch
file after the run terminates.
By default, OUTAP1 is selected for output and all other streams deselected when QGEN begins
processing each case. The SEL and DRP actions allow control over which files a case will be
written to, either when an explicit WRT action is issued, or by the automatic write QGEN issues
when it reaches the end of the specifications for each case.
Except for the LISTING file, which is always created, no output will be written to any file that has
not been specified by a data directive.

Action Description
DRPn[,m...] Deselects output streams numbered n, m, etc. for the current

case. See the SEL action below for more information.
GET'prompt'<addr> Displays the prompt on screen and pauses until a string is typed

at the keyboard and the enter key pressed. The string is stored in
the work area starting at the address specified.

LST<addr>[ctrl] Immediately writes to the listing file the contents of the work area
starting with the address specified and ending after the number of
bytes specified for WIDTH in the RUNOPS line (see section 4.2).
The optional print controls are listed in section below.

PRT<addr>[ctrl] Immediately writes to the report file the contents of the work area
starting with the address specified and ending after the number of
bytes specified for WIDTH in the RUNOPS line (see section 4.2).
This has no effect if no REPORT file was named (see section 3.1).
The optional print controls are listed in section below.

SAY<addr> Displays the contents of the work area beginning at the address
specified on screen, for a length of 78 bytes, without pausing.

SELn[,m...] Selects the current case to be written to the output streams n, m,
etc. (see section 3.1.2). The case will actually be written by any
subsequent WRT action (see below) or when the end of the spec
file is reached for the current case, if not deselected before then.
QGEN starts each case with OUTAP1 selected and all other
output streams deselected, so this action must be used to send
data to any other output files. If an output stream is not defined by
a data directive, selecting it will have no effect.

RC'n' Returns errorlevel 'n' at the end of the QGEN run (0 =< n =< 255)
for testing in batch files. QGEN normally returns an errorlevel of 0
for a successful run and 12 if terminated with spec errors.

WRT Immediately writes out the current record to any streams currently
selected, then continues processing. QGEN writes each case to
any files selected when it reaches the end of the specifications,
regardless of any previous WRT commands, so streams should
be deselected after this command to avoid unwanted duplicates.

QGEN User's Guide Revision: 21.1.5 Page 19

7.4.1 Print Control Codes
QGEN provides a limited amount of formatting for text output sent to the REPORT or LISTING
files. The spacing between lines of text can be adjusted by specifying one of the following print
control codes immediately after the address of the output.

B Write a blank line before writing this line.
C Write a blank line after writing this line.
N Do not issue a linefeed before writing this line, that is, overwrite the

previous line written.
P Issue a formfeed before writing this line.

7.5 Program Flow Actions
QGEN normally executes all the instructions in the spec file in sequence for each case, then
writes it out and starts over at the top for the next case. The actions described below allow the
user to control the order in which instructions are executed, based on the results of tests on the
data for the current case.

Action Description
BCH<tag> Branch to subroutine named by tag, do not carry loop increments.
EOJ Force an end of job, that is, stop the QGEN run after processing

this case. A recycle pass will be executed if RECYCLE was called
for in the RUNOPS (see section 4.2),

LNK<tag> Link to subroutine named by tag, carry loop increments.
RET Return from a subroutine.
SKP<n|tag> Skip past the next n lines, or to the tag named.
SKPEND Skip to the end of the spec file. No further instructions will be

processed for the current case and any currently selected output
streams will be written.

7.5.1 Subroutines
QGEN allows a group of instructions to be defined as a subroutine so that they can be used as
many times as needed without being written out in full each time. A subroutine must begin with
an instruction identified with a tag (see section 7.1) and must end with an RET action.
Program control is transferred by using the BCH or LNK actions with the tag that identifies the
subroutine. When QGEN reaches a RET action, program control returns to the instruction line
immediately following the BCH or LNK action that called the subroutine. Subroutines may be
nested, that is, an instruction in one subroutine may call another subroutine.
QGEN does not pass arguments to subroutines, but the user can load data into locations in the
work area that will be used by the subroutine. When a subroutine is called by an instruction
within a loop (see section 9), the loop increments will carry through to the instructions in the
subroutine if it is called by the LNK action. They will not carry to the subroutine if it is called by
the BCH action, although they will still be in effect when control returns to the calling routine.

QGEN User's Guide Revision: 21.1.5 Page 20

7.6 Cleaning Rules
Any instruction that evaluates logically may be used as a cleaning instruction by starting the line
with a question mark (?). A cleaning instruction is given a rule name, up to 40 characters long,
with no embedded spaces, entered in the result field. The question mark does not need to be in
column 1 of the line and may be separated from the rule name by one or more spaces.
When the logical condition defined by a cleaning instruction evaluates false, the rule is broken
and both the case ID for the current record and the rule name are written to the listing file.
Breaking a rule also turns on switch 6 (see section 6.2.2) for the current record.
At the end of the listing file, QGEN provides a summary with the number of cleaning messages,
the number of cases involved, and a breakdown by each rule that was actually broken during
the run. If the number of cleaning messages exceed the maximum allowed by the MAXERR run
option (see section 4.2), the run is terminated with the current record.

8 OPERATION CODES
Each QGEN instruction carries out some operation on the data or expressions specified in its
operand fields, the exact nature of which is indicated by an operation code, or opcode.
One type of operation tests a condition among the operands and results in an action being
taken if the condition tests true, or in a cleaning rule being broken if the condition tests false.
Logical and comparison instructions fall into this category, as do the SPB and MP instructions
on column-binary data.
A second type of operation uses the data in the locations specified in the operands as input to a
procedure that results in new data being placed in a location specified in the result field of the
instruction. Arithmetic, data conversion and table lookup instructions fall into this category, as
do the remaining column-binary punch instructions.
Except for the program control instructions described in section 9, every QGEN instruction has a
conditional form, where the first operand tests a condition, and the operation will be performed
on the remaining operands only if that condition tested true. The conditional form is specified by
prefixing the operation code with the letter C.

8.1 Logical Instructions
The following operations test for a condition between operands using Boolean logic. Operands
must all be expressions that evaluate to true or false. The result can be either an action to be
performed if the logical condition tests true, or a cleaning rule that will be broken if it tests false.

Code # Args Description
ALL 0 True for all cases (performs an action unconditionally).
AND 1-4 True if the conditions in all operands test true.
IF 1-4 Identical to "AND"
OR 1-4 True if the conditions in any one or more of the operands tests

true.
EOR 2-4 True if one, and only one, of the operands tests true.

QGEN User's Guide Revision: 21.1.5 Page 21

8.2 Arithmetic Instructions
The following operations perform arithmetic on the data specified by the operands. Operands
must all be valid numeric fields or expressions that evaluate to a numeric value. The result is
converted to the numeric format specified in the result field and placed there. Invalid numeric
data will cause the instruction to fail, usually resulting in a "CANNOT CONVERT" error message
in the listing, and no change will be made to the previous contents of the result location.

Code # Args Description
ADD 1-4 Add all operands: A+B[+C[+D]].
DIV 2 Divide the first operand by the second: A/B.
MPY 2-4 Multiply all operands together: A*B[*C[*D]].
MPD 3 Multiply the first two operands and divide by the third: (A*B)/C
SUB 2 Subtract the second operand from the first: A-B.
SQ 1 Compute the square root of the operand.

8.3 Comparison Instructions
The following operations test for a condition between operands by comparing the contents of
the fields specified. The result can be either an action to be performed if the logical condition
tests true, or a cleaning rule that will be broken if it tests false.
Opcodes beginning with F compare the contents of fields directly and all operands must specify
the same data type and be of the same size.
Opcodes beginning with N compare numeric values and operands must be either valid numeric
fields or expressions that evaluate to a numeric value. Operands do not need to be the same
type or size as they are converted internally for comparison. Invalid numeric data will cause the
instruction to fail, usually resulting in a "CANNOT CONVERT" error message in the listing, and
no change will be made to the previous contents of the result location.

Code # Args Description
FEQ/NEQ 2-4 True if all operands are equal: A = B [= C [= D]]
FNE/NNE 2-4 True if no two operands are equal: A # B [# C [# D]]
FHE/NHE 2-4 True if the first operand is higher or equal to all remaining

operands: A>=B[,C[,D]].
FHI/NHI 2-4 True if the first operand is higher than all remaining operands:

A>B[,C[,D]]
FLE/NLE 2-4 True if the first operand is lower or equal to all remaining

operands: A=<B[,C[,D]].
FLO/NLO 2-4 True if the first operand is lower than all remaining operands:

A=<B[,C[,D]].
FRN/NRN 3 True if the first operand falls in the range defined by the remaining

two operands, inclusive: B=<A=<C, where B<C.
FNR/NNR 3 True if the first operand does not fall in the range defined by the

remaining two operands, inclusive: A<B or A>C, where B<C.

QGEN User's Guide Revision: 21.1.5 Page 22

8.4 Column Binary Punch Instructions
The following operations require column-binary data in all operand fields, either by default in
address modes B or E (see section 4.1) or by explicit specification in address modes C or D.
Any reference to other data types will generate a spec error. MP and SPB test the number of
punches contained in the data locations specified by the operands and result in an action if true.
TAL counts the punches and returns a numeric value in the format specified in the result field.
The remaining opcodes result in punch modifications to the locations specified in the result field.

Code # Args Description
MP 1-4 True if more than one punch is present among those specified in

the operands (requires both column and punches in operands).
NEN 2-4 Performs a bitwise AND, one punch at a time, of the columns

specified in the operands. Multi-column fields of equal length may
be specified, generating a result field of that length, with matching
columns in each field ANDed. No punches should be specified in
either result or operands.

NET 2-4 Performs a bitwise OR, one punch at a time, of the columns
specified in the operands. Multi-column fields of equal length may
be specified, generating a result field of that length, with matching
columns in each field ORed. No punches should be specified in
either results or operands.

NEX 2 Performs a bitwise EOR (Exclusive OR), one punch at a time, of
the columns specified in the operands. Multi-column fields of
equal length may be specified, generating a result field of that
length, with matching columns in each field ORed. No punches
should be specified in either results or operands.

PMV 1 Move a set of punches in one column to a different set of punches
in another column. Result and operand must be single columns,
with the same number of punches specified for both.

SHI 1 Forces a column to single punch, with only highest punch kept.
Both result and operand must be single columns, with no punches
specified in either.

SLO 1 Forces a column to single punch, with only the lowest punch kept.
Both result and operand must be single columns, with no punches
specified in either.

SPB 1-4 True if no more than one punch is present among those specified
in the operands (requires both column and punches in operands).

TAL 1-4 Tally (count) the punches specified across all operands and put
the number found in the result field (requires both column and
punches in operands).

QGEN User's Guide Revision: 21.1.5 Page 23

8.5 Data Conversion Instructions
The following instructions take data from the locations specified by the operands and move it to
the location specified in the result field, converting it from one format to another as indicated by
the opcode. No testing is performed to verify that originating data are of the type specified.
The length of the data being converted is determined by the input, and only the starting location
of the output should be specified in the result field. Note that in conversions between ASCII and
column binary formats, an ASCII byte converts to a 2 byte column, and vice-versa.

Code # Args Description
ATB 1 Convert from ASCII to column-binary. Each ASCII byte converts

to a 2-byte column. Maximum input 80 bytes.
BSA 1 Convert from column-binary to ASCII, keeping only alphanumeric

characters, punches and blanks only. Each valid 2-byte column
converts to one ASCII byte. Maximum input 80 columns.

BTA 1 Convert from column-binary to ASCII. Each valid 2-byte column
converts to one ASCII byte and invalid multi-punch combinations
generate an asterisk (*). Maximum input 80 columns.

DEC 1-4 Converts a list of column-binary punches to ASCII 1's and 0's in a
series of successive bytes. Operands must be single columns
with punches specified. The number of bytes output will be equal
to the total number of punches specified across all operands.

ED 1 Formats an ASCII numeric field using a mask (see section 8.5.1)
ATE 1 Converts from ASCII to EBCDIC. Maximum input 80 bytes.
ETA 1 Converts from EBCDIC to ASCII. Maximum input 80 bytes.
MOV 1 Copies data from one location to another. Maximum input 250

bytes or 80 column-binary columns.
STR 1-4 Converts a list of column-binary punches to their ASCII values in a

series of successive bytes. Operands must be single columns
with punches specified. The number of bytes output will be equal
to the total number of punches specified across all operands.

8.5.1 Formatting With Edit Masks
An edit mask is a literal string used with the ED operation code to format an ASCII numeric field.
Within the mask, the letter X is used to mark the position of each digit. Standard numeric period
and comma punctuation may be specified and leading zeroes are suppressed, except after a
decimal point. Other characters will be placed as they appear in the mask. For example:

1001 ED 901c6'XXX,XXX'

 The following examples illustrate the effect of various edit masks on numeric fields:
INPUT MASK OUTPUT
009999 'XXX,XXX' 9,999
-00999 'XXX,XXX' -999
10000 'XXX.XX%' 100.00%

QGEN User's Guide Revision: 21.1.5 Page 24

9 PROGRAM CONTROL INSTRUCTIONS
QGEN provides two instructions that do not interact with the data in the work area, but are used
instead to control the execution of other instructions in a spec file. They are:

Code # Args Description
LOOP R-N 1-4 Repeat a range R of instructions N times. The range may be given

as a number of lines to be included or as a tag identifying the last
line of the range. Operands for a loop instruction are increments
applied to the corresponding operands in the looped instructions
at each new pass through the loop.

NOP 0 No Operation: a dummy instruction used to provide a target line
for a program flow action or to end a loop range.

9.1 Loop Instructions
A loop instruction tells QGEN to perform a group of instructions (the range of the loop), then to
return to the beginning of the range and repeat the same group of instructions with a specific
increment applied to each operand and result field, and to do this a specified number of times.

The format of the loop instruction is:
<increment> LOOP <RR>-<nn|Zn> [increment] [increment] [increment] [increment]
The range always begins with the line immediately following the loop instruction. "RR" can be a
number, in which case it specifies how many instruction lines are included in the range, or it can
be a tag labeling the last instruction line to be included in the range. The number of times to
loop can be a positive integer, or it can be a counter (see section 6.2.1).
Loops can increment either columns or punches using positive or negative integer values.
Column increments are integer numbers that tell by how many columns the location specified in
an operand will be incremented in each pass of the loop. By default, each column translates to
one byte in address modes C and D and to two bytes in address modes B and E (see section
6.1.1). Appending the letter "C" to a column increment forces it to count single bytes and
appending the letter "B" forces it to count two bytes per column, regardless of address mode.
Punches may also be incremented in both column-binary and ASCII data. Punch increments
are specified by the expression PI<n> where n indicates the number of punches to increment.
Punches are always incremented in the sequence 1,2,3,4,5,6,7,8,9,0,X,Y (see section 6.3.2).
Looping past the end of a column carries into the next column.
Increments are applied to any result fields or actions that address the work area, counters or
switches. They are ignored for operands that contain numeric constants or lookup table names,
and for program flow and output actions that do not address locations.
Here are some examples of loops:
 002 1-3 LOOP 001 PI1 Loop 1 instruction 3 times. The result field is incremented

by 2 columns at a time, the first operand by 1 column, and
the second operand by one punch.

 0 A1-24 LOOP -1b 8c Loop the block of instructions through the line tagged as
A1 24 times. The result field is not incremented, the first
operand is decremented by 2 bytes, and the second
incremented by 8 bytes at a time.

QGEN User's Guide Revision: 21.1.5 Page 25

9.2 Loops and Program Flow
Loops may be nested, with inner loops being executed in full for each pass of the outer loop,
and inner loop operands starting over from the values reached through outer loop increments.
QGEN allows skipping within the range of a loop, and a loop can always be terminated by
skipping out of its range, but skipping into the range of a loop will cause a spec error.
QGEN provides two actions that call subroutines (see section 7.5.1). The BCH action calls a
subroutine without carrying loop increments through to the instructions in the subroutine. This
permits the user to load data into fixed locations under a loop, branch out of the loop to perform
actions on that data, and then continue with the loop. The LNK also calls a subroutine, but it
carries all loop increments through to the instructions in the subroutine, so that the subroutine
functions exactly as if it appeared within the range of the loop.
While in loops, including nested loops, the pass count for the current execution level is copied to
counter Z1000 (see section 6.2.1) so that its value is available to the user.

10 TABLE LOOKUPS
Table lookup instructions allow the contents of data locations to be compared against tables of
pre-defined strings or values (arguments), returning a character string (function) when a match
is found. Any number of tables may appear anywhere in a spec file, as long as they are defined
before they are referenced in instructions. The function returned is always a character string.

10.1 Tables
The first line of every table is identified by the TABLE keyword and specifies the name by which
the table will be referenced in lookup instructions, the type (character or numeric), the length of
the function and argument fields, and the maximum number of elements the table may contain.
An END statement (see section 2.2) signals the end of the table. Each line between the TABLE
and END statements specifies a table entry.
The format of the TABLE statement is:

TABLE <name> [NUM] A=nn F=mm E=pp
The table name may be up to 8 characters in length and must be unique within a spec file. The
keyword NUM is used to specify a numeric table, in which case all table arguments must be
valid numeric values in strict ascending order. The remaining parameters specify the number of
characters in the Argument, the number of characters returned by the Function, and the
Estimated size, which sets the maximum number of entries allowed for the table.
If nn is the argument size and mm the function size specified for a table, the first nn characters
of each table entry line are the argument. One character is skipped, then the following mm
characters are the function returned by the entry.
In character type tables, any character string may be used for an argument. Case is preserved
("A" and "a" are not the same). Tables are checked from top to bottom. Duplicate arguments
are not flagged as errors, but only the first occurrence will be found by the lookup instruction.
For tables identified as numeric by use of the NUM keyword, arguments are converted to
floating point for comparison purposes and the TLN instruction must be used for lookups.

QGEN User's Guide Revision: 21.1.5 Page 26

10.2 Table Lookup Instructions
Table lookup instructions always specify the name of a previously defined table as the second
operand. The first operand specifies the argument that will be used to perform the lookup.

Code # Args Description
TLU 2 Looks up the character string in the location specified by the first

operand in the character type table named in the second operand.
If a matching entry is found, its function is returned in the location
specified in the result field.

TLN 2 Looks up the exact value of the numeric field specified by the first
operand in the numeric type table named in the second operand.
If a matching entry is found, its function is returned in the location
specified in the result field. The table must be defined as numeric.

TLR 2 Compares the character string in the location specified by the first
operand to the ranges between the arguments of the character
type table named in the second operand, using ASCII sequence,
excluding lower bounds and including upper bounds. The function
of the upper bound argument of the matching range is returned in
the location specified in the result field.

The length of the ASCII string used as input to character table lookups is determined solely by
the size of the argument specified for the table named in the instruction. The operand points to
the location of the start of the string, and any ASCII field length specified there is ignored.
Column binary fields can be specified directly as input to character table lookup instructions and
QGEN will convert the contents of the field to ASCII internally before performing the lookup. In
this case, the length specified in the TLU or TLR operand determines the number of characters
converted and must match the argument size for the table, or results may not be as expected.

10.3 Examples of Table Lookups
The following example compares the results of TLR and TLU instructions using the same lookup
table on the same argument. The result field is assumed blank before the lookup.

TABLE ARANGE A=5 F=1 E=5 Input TLR TLU
00001 1 00000 1
00010 2 00001 1 1
00100 3 00005 2
01000 4 00010 2 2
99999 5 00015 3
END 00100 3 3
121 TLR 111 ARANGE 01000 4 4
122 TLU 111 ARANGE 01500 5

The next example illustrates the conditional form of a numeric table lookup instruction. The first
operand is the condition and tests for a numeric value in 491c4 in the range from 1 to 100. This
test will fail if there is no valid number in that field, or if there is one and it is not in that range.
The table lookup will only occur if the condition tests true, in which case the value will be looked
up in the numeric type table named NTAB, and if a match is found, the function returned in 501.

501 CTLN 491c4r'1;100' 491c4 NTAB

QGEN User's Guide Revision: 21.1.5 Page 27

11 DICTIONARIES
A Dictionary is a lookup table by which labels are assigned definitions that will be substituted for
them whenever referenced in the spec file. Dictionary substitutions may be used anywhere in
the spec file, including in subsequent dictionary definitions. A QGEN spec file may contain any
number of dictionaries anywhere before the table definition section.

11.1 Dictionary Labels and Definitions
A dictionary begins with a DICT statement and ends with an END statement. Every line
between them, except for comments and blank lines, must be a dictionary entry beginning with
a label in column 1, followed by two definitions separated by spaces and enclosed by double
quotes ("). All text after the second definition is treated as a comment and ignored, although it
will appear in the listing file. The format is:

DICT
<LABEL> <"Definition 1"> <"Definition 2">
 ...
END

For each entry, the contents of the first definition will be substituted whenever the label appears
anywhere in a QGEN spec file. QGEN does not use the second definition, which is used for text
area substitution in those programs in the QUIP System that show annotated tables.
The contents of a definition are only checked if and when a substitution is made in the spec file.
A dictionary definition may refer to another dictionary item previously defined in the spec file.
Labels are case sensitive and may be of any length, terminated by a space. Labels are read
sequentially from left to right and each label must be unique in a spec file. QGEN checks labels
for uniqueness as it compiles the spec file: if ABC is a label, then ABCD will be rejected,
because it will be recognized as ABC after the first three characters have been read, whereas
ABD will be accepted, because AB was not recognized as a label.

QGEN User's Guide Revision: 21.1.5 Page 28

11.2 Using Dictionary Substitutions
Once a dictionary entry has been defined, it may be used anywhere in the spec file by entering
its label, prefixed by a double pound sign (##), exactly where the substitution is desired.
Substitutions take place immediately, as the spec file is compiled, and work exactly as if the
contents of the definition had been entered where the label appears in the specs. The following
example illustrates how dictionary entries are defined and substitutions are called for in specs:

DICT
period "121c4" "" Location of period code
current "9803" "" Code for current period
prior "9801" "" Code for prior period
END

SEL2&DRP1 AND ##period@'##prior'

The result of this would be exactly as the instruction had been written:
SEL2&DRP1 AND 121C4@'9801'

QGEN parses the text immediately following the ## keyword for a valid label and continues until
it finds the longest label already defined in any dictionary as it processes the spec file. This
allows labels to be concatenated with additional text, or even other labels, to determine which
dictionary entry will be used for a substitution. See section 11.4 for an example of
concatenation.

11.3 Built-in Dictionary Labels
QGEN provides several built-in dictionary labels for which the definitions are generated by the
program when it runs. These are:

##SYS_DATE The current date at the time of execution, as it appears at the top
of the listing, in the format: Mth dd yyyy (e.g., Dec 16 1998)

##SYS_TIME The time at which QGEN began execution, as it appears at the top
of the listing, in the format: hh:mm (e.g., 15:30)

These built-in dictionary entries have the same contents for both spec and text definitions.

11.4 Command Line Parameters
QGEN provides for pairs of parameters and their arguments to be passed to the program on the
command line. Each parameter becomes a dictionary entry label, and its argument is used as
the contents of the definition for that dictionary entry. The format is:

QGEN specfile /# Parameter1 Argument1 Parameter2 Argument2 .../#

QGEN User's Guide Revision: 21.1.5 Page 29

The following example demonstrates how a command line parameter can be used with a table
of dictionary entries to select the output format of a QGEN run:

QGEND QTDEMO.QGS /# WAVE P /# <--- Command line
...
DICT
FILE_C "3c3='710'" "" Current wave
FILE_P "3c3='708'" "" Prior wave
END
...
? WRONG_WAVE AND ##FILE_##WAVE Check for correct wave
...

In this example, the argument for the command line parameter "WAVE" is "P" which will be
substituted for ##WAVE in "##FILE_##WAVE" in the cleaning instruction to check the wave.
QGEN will recognize this expression as the dictionary label FILE_P, and the spec definition for
that dictionary entry will be substituted into the cleaning instructions. When using command line
parameters in this manner, care must be taken that any argument supplied is accounted for in
the specs, otherwise the reference will not resolve, causing a spec error.

12 FLOW CONTROL AND BATCH PROCESSING
QGEN is strictly script-driven, as are most of the programs in the QUIP System. It is designed
for a production environment and optimized for repetitive processing tasks. QGEN can also be
used as a data manipulation engine for "user friendly" systems built with environments or
languages that can generate text instructions and run external processes, such as FoxPro,
Delphi, Visual Basic, and most standard programming languages.
Through judicious use of dictionaries, it is possible to design "generic" spec files that can be
used for a number of similar projects, needing only minimal information to be added or modified
for individual runs. QGEN also provides flow control features to assist with batch processing and
process automation situations, and allow building modular libraries of spec files that can be
selected and included into other files at run-time.

12.1 Includes
The include statement allows a spec file to call another spec file. QGEN processes an included
spec file as if its entire contents appeared in the calling file beginning at the line containing the
include statement, and then returns to processing the calling file at the next line. Included spec
files can in turn call other spec files, but the flow of specs will always return through all nested
levels to the original file.
An include statement begins with the keyword #INCLUDE in column 1, followed by the name of
the spec file to be included. The format is:

#INCLUDE <[path]specfile.ext>
Include statements may not appear within lookup tables or a dictionaries.

12.2 Stopping and Starting Specs and Listings
QGEN provides special statements that allow the flow of spec processing to be turned on or off
when reading a spec file, and to suppress the output of those specs processed to the listing file.
The flow control statements all consist of a single beginning in column 1 with a keyword and, if
allowed, its parameter, with no other text on the line. They are:

QGEN User's Guide Revision: 21.1.5 Page 30

STOPSPEC Stop processing the spec file from this point until a
STARTSPEC statement is read.

STARTSPEC Resume processing the spec file if it has been stopped by
a STOPSPEC statement.

STARTSPEC IF <##X=Y> Resume processing the spec file if it has been stopped by
a STOPSPEC statement and if the definition of dictionary
entry X matches the character string "Y".

STOPLIST Stop sending any output to the listing file from this point
until a STARTLIST statement is read.

STARTLIST Resume sending output to the listing file if it has been
stopped by a STOPLIST statement.

All of these statements take effect immediately and unconditionally, except for STARTSPEC IF,
which applies only if the condition evaluates true. While STARTSPEC IF may be used with any
dictionary entry, it is most effective when used with command line parameters (see section 11.4)
for controlling the inclusion or exclusion of subsections of a spec file at run time.
In the following example, one or the other of two spec files (or neither) will be included in the
calling spec file depending on the value of the dictionary entry labeled RUNCODE:

STOPSPEC
STARTSPEC IF ##RUNCODE=A
#INCLUDE subfile1.qgs
END
STOPSPEC
STARTSPEC IF ##RUNCODE=B
#INCLUDE subfile1.qgs
END
STARTSPEC

13 WHERE TO GET ADDITIONAL INFORMATION
For information about QGEN and other QUIP System programs, contact:

Jan Werner Data Processing

www.jwdp.com

	TABLE OF CONTENTS
	INTRODUCTION
	1 HOW QGEN WORKS
	1.1 The Work Area
	1.2 Input and Output Streams
	1.3 Other Input and Output

	2 THE SPEC FILE
	2.1 Specification Types
	2.2 Comments and Special Commands

	3 DATA DIRECTIVES
	3.1 File Names
	3.1.1 INTAP and INDATA Files
	3.1.2 OUTAP Files

	3.2 Command Line Data Directives

	4 GLOBAL OPTIONS
	4.1 Address Mode
	4.2 The RUNOPS Line

	5 DATA FLOW
	5.1 INSERT Instructions
	5.2 IDs and Sequence Checking
	5.3 Some Examples of Data Inserts

	6 THE QUIP SPECIFICATION LANGUAGE
	6.1 Data Specifications
	6.1.1 Addressing Data
	6.1.2 Fields and Numbers
	6.1.3 Columns and Punches
	6.1.4 Literals, Constants and Numeric Expressions

	6.2 Counters and Switches
	6.2.1 Counters
	6.2.2 Switches

	6.3 Testing Data
	6.3.1 Field and Numeric Tests
	6.3.2 Punch Tests
	6.3.3 Boolean Operators and Compound Tests
	6.3.4 Examples of Test Conditions

	7 INSTRUCTIONS AND ACTIONS
	7.1 Tags
	7.2 Results and Actions
	7.3 Data Modification Actions
	7.3.1 Clearing Fields
	7.3.2 Entering Values Into Data
	7.3.3 Incrementing Counters
	7.3.4 Setting and Clearing Switches

	7.4 Output Actions
	7.4.1 Print Control Codes

	7.5 Program Flow Actions
	7.5.1 Subroutines

	7.6 Cleaning Rules

	8 OPERATION CODES
	8.1 Logical Instructions
	8.2 Arithmetic Instructions
	8.3 Comparison Instructions
	8.4 Column Binary Punch Instructions
	8.5 Data Conversion Instructions
	8.5.1 Formatting With Edit Masks

	9 PROGRAM CONTROL INSTRUCTIONS
	9.1 Loop Instructions
	9.2 Loops and Program Flow

	10 TABLE LOOKUPS
	10.1 Tables
	10.2 Table Lookup Instructions
	10.3 Examples of Table Lookups

	11 DICTIONARIES
	11.1 Dictionary Labels and Definitions
	11.2 Using Dictionary Substitutions
	11.3 Built-in Dictionary Labels
	11.4 Command Line Parameters

	12 FLOW CONTROL AND BATCH PROCESSING
	12.1 Includes
	12.2 Stopping and Starting Specs and Listings

	13 WHERE TO GET ADDITIONAL INFORMATION

